CRUSH SCHOOL - Crush School Effective Teaching and Active Learning Blog

CRUSH SCHOOL

I blog on Brain-Based Learning, Metacognition, EdTech, and Social-Emotional Learning. I am the author of the Crush School Series of Books, which help students understand how their brains process information and learn. I also wrote The Power of Three: How to Simplify Your Life to Amplify Your Personal and Professional Success, but be warned that it's meant for adults who want to thrive and are comfortable with four letter words.

How to Create Engineering Challenges for Your Science Classroom

Illustration about usiung Science and engineering practices to create engineering experiences in a science classroom in eight steps

Integrating engineering challenges into your science classroom can ignite curiosity and foster critical thinking among students. The Next Generation Science Standards (NGSS) and Science and Engineering Practices (SEPs) were designed to provide a framework for teaching students how to use the process engineers and scientists use. But teachers must still do the work of creating activities that accomplish the NGSS engineering goals.

Below, is a step-by-step guide to doing so. But first…

Understanding NGSS and SEPs

The NGSS are K–12 science content standards that set the expectations for what students should know and be able to do. SEPs are one of the three dimensions of NGSS, focusing on the skills and practices scientists and engineers use to investigate the natural world and design solutions to problems.

The eight SEPs are:

  1. Asking Questions and Defining Problems

  2. Developing and Using Models

  3. Planning and Carrying Out Investigations

  4. Analyzing and Interpreting Data

  5. Using Mathematics and Computational Thinking

  6. Constructing Explanations and Designing Solutions

  7. Engaging in Argument from Evidence

  8. Obtaining, Evaluating, and Communicating Information

Step-by-Step Guide to Creating Engineering Challenges

1. Identify Learning Objectives

Start by identifying the key learning objectives from the NGSS. Determine what concepts you want your students to understand and what skills they should develop. For example, if you want students to understand the principles of force and motion, align your challenge with relevant performance expectations and SEPs.

2. Define the Problem (use a Phenomenon Whenever Possible)

Present a real-world problem that is relevant and challenging. Frame the problem in a way that requires students to apply their knowledge and creativity. For instance, challenge students to design a bridge that can hold a certain weight using limited materials. You can introduce it by using a phenomenon such as the The Minneapolis Bridge Collapse (August 1, 2007) to introduce the engineering challenge to peak students’ interest.

3. Develop a Guiding Question

Formulate a guiding question that will direct students' inquiry and design process. A well-crafted question encourages critical thinking and exploration. For example: "How can we design a bridge using only paper and tape that can support a 5-pound weight?"

4. Set Criteria and Constraints

Clearly define the criteria for success and any constraints. Criteria might include the weight the bridge must hold, while constraints could involve the materials and time available. This step is crucial as it mimics the limitations engineers face in the real world.

5. Encourage Research and Brainstorming

Guide students to research existing solutions and brainstorm their own ideas. Encourage them to think creatively and consider multiple approaches. This aligns with SEPs such as Developing and Using Models and Engaging in Argument from Evidence.

6. Plan and Create

Have students plan their designs, create prototypes, and test their solutions. Provide opportunities for iterative testing and improvement. This hands-on process allows students to apply concepts from SEPs like Planning and Carrying Out Investigations and Analyzing and Interpreting Data.

7. Test and Evaluate

Once the prototypes are built, conduct tests to see how well they meet the criteria. Encourage students to analyze the data collected during testing to evaluate the effectiveness of their designs. This phase emphasizes SEPs related to Analyzing and Interpreting Data and Using Mathematics and Computational Thinking.

8. Communicate Results

Have students present their designs, processes, and findings to the class. This can be done through reports, presentations, or demonstrations. This step aligns with Obtaining, Evaluating, and Communicating Information, allowing students to articulate their understanding and reasoning.

Example Engineering Challenge

Objective: Understand the principles of aerodynamics and forces.

Possible Phenomenon: Glider Airplanes

Problem: Design a paper airplane that can fly the farthest distance.

Guiding Question: "How can we design a paper airplane that maximizes flight distance using principles of aerodynamics?"

Criteria and Constraints:

  • The airplane must be made from a single sheet of standard paper.

  • No additional materials (e.g., tape, clips) are allowed.

  • The plane must be launched by hand.

Process:

  1. Research different paper airplane designs and the principles of aerodynamics.

  2. Brainstorm and sketch multiple designs.

  3. Build and test prototypes, measuring flight distances.

  4. Analyze results and refine designs.

  5. Present final designs and explain the aerodynamic principles applied.

Conclusion

Creating engineering challenges using NGSS and SEPs can transform your science classroom into a dynamic learning environment. By following the steps above, you can help students develop a deep understanding of scientific concepts while honing their problem-solving and critical-thinking skills. These challenges not only make learning fun but also prepare students for real-world scientific and engineering endeavors.

BOOKS & TOOLS

Phenomena Poster
$3.00
Earth Science Reasons for Seasons Project
Sale Price: $7.00 Original Price: $9.00
Back 2 School Classroom Bundle of 8 Posters
Sale Price: $8.00 Original Price: $16.00
Because... Chemistry Unisex T-Shirt
from $15.00
Mistakes Are... Poster
$3.00

Introductory Activities in Science: Using NGSS the Right Way to Engage Students

The first few days of science class set the tone for the entire year. Ideally, the activities we design for the first week of school lead to classes buzzing with curiosity, where students are actively engaged in uncovering the mysteries of our world. Such is the aim of the Next Generation Science Standards (NGSS).

However, getting started with NGSS can be overwhelming, because it asks a lot of science teachers. Unlike past academic standards, the NGSS isn’t just a complicated list of content to be first deciphered and then covered. It is that and then some.

First, we need to understand what the standard benchmarks actually call for.

Then, we need to decipher what the NGSS powers that be want from us.

Next, we have to learn the methodology they lay out for us to follow.

Finally, we are tasked with creating suitable learning experiences.

Let’s take a look.

The End Goal of NGSS Deciphered

The end-of-their-academic-road goals of NGSS are for students to (1) learn those really important scientific concepts that often elude the traditionally-educated, (2) give them a general understanding of how stuff works, and (3) make them more informed and skilled citizens capable of working collaboratively to find and use relevant information to innovate and propose solutions to present and future problems.

The NGSS Method Deciphered

The madness, I mean method, to achieve the NGSS end goals is to help students build a deeper understanding of important, general science concepts (aka Crosscutting Concepts or CCCs) by:

  1. starting with a phenomenon (an observable event that happens naturally or as a result of human activity),

  2. applying Science and Engineering Practices (SEPs - expanded take on the scientific method that incorporates engineering design and process), and

  3. using subject-specific Disciplinary Core Ideas (DCIs) to “solve” the phenomenon, or explain why and how it happens.

Of course, the design of suitable, NGSS-aligned learning experiences falls on the teacher and it is both fun and time-consuming.

Fun, because we are creating meaningful, relevant, and engaging learning experiences and performance assessments.

Time-consuming, because we are creating meaningful, relevant, and engaging learning experiences and performance assessments: multi-day lessons, activities, self-guided inquiries, and projects.

Of course, it gets easier with time, as we create a template we can use to streamline subsequent learning experiences and gain more expertise in teaching a particular subject.

But first, we need to bring our students back from the dark side.

Engaging Students at the Beginning of the School Year

How do we get students to care about science?

First, we need to move away from the idea that “science lives in a textbook.” The traditional way of teaching led to many students viewing science as a discipline reserved for “those few, very smart kids” and a subject difficult for “the common folk” to succeed in. These stereotypes are just as damaging as they are inaccurate.

Thus, our job becomes making science more approachable by making it more doable.

Phenomenon Based Learning (PhenBL) holds this promise as “the science of things” is removed from the dead textbook and placed in the world of the living to be investigated, its concepts deconstructed, and its skills learned through the examination of real events that occur in the real world.

“Here it (the phenomenon) is. Now go and find out and explain using science what it is, why it happened, and how it happened” - we say to the kids and let them take charge of their own learning of science - batteries not included, but guidance and support given if and when necessary.

Learning Experiences the NGSS Way

and my way…

What you’ll find below is one way I design lessons to fit the NGSS paradigm. Hopefully, you will find this NGSS Learning Experience Template useful, but it is not the only way of doing it.

First, I think about the big ideas of the unit and a phenomenon I can use that can be explained with one or more of those ideas. Then, I lay out a rough plan of how students will learn and what they will create to provide as evidence of learning. Take a look at the slide above I created as part of the lesson on the systems approach and using phenomena to study science. As it was designed for my Earth and Space Science class, I introduced the idea of phenomena first, then had students create a quick poster (see the directions slide below) on the Earth’s four spheres.

Earth and Space Science Lesson on the 4 Earth’s Spheres (atmosphere, hydrosphere, geosphere, and biosphere) Classroom Poster Activity

I wanted to emphasize the Systems Approach, an idea that changing a part of one sphere (atmosphere, geosphere, biosphere, and hydrosphere) will affect parts of the other spheres, as they are connected by various matter interactions (the water cycle, spread of pollutants etc.).

On the second day, we reviewed the key ideas from day one and moved on to creating a final product - a video on how an anthropogenic (human-created) phenomenon might affect each of the four spheres - that served as evidence of my students understanding the content they were learning.

One of the requirements for the video was that my students create various models to explain how the anthropogenic phenomenon they chose affects each sphere. Developing and using models increases student understanding of different models scientists use to represent concepts, data, or findings, provides an effective way of presenting complex systems ideas, or solutions, and is one of the eight Science and Engineering Practices (SEPs) students should master during their academic careers.

Grab the 9-slide NGSS Learning Experience Template (FREE) if you like the approach so you can use it in your content area.

And, if you teach Earth and Space Science and would like a three- to four-day intro lesson, check out this Anthropogenic Phenomenon Investigation ($5).

How to NGSS Like a Jedi

Just as the Jedi use the phenomenon of the force to bend the Universe to their will, teachers can use real life phenomena to bend student minds toward learning important science concepts.

I hope Yoda and the NGSS peeps would agree that it is perfectly ethical to [Jedi mind] trick our science students into using key unit of study ideas (DCIs) and key science concepts (CCCs) to explain real world events (phenomena) they observe in life, online, or in the media by applying science and engineering practices (SEPs) during the creation of their final product.

Giving them light sabers would be way cooler, but the scientists are still working on miniaturizing the handles.

BOOKS & TOOLS

Phenomena Poster
$3.00
Earth Science Reasons for Seasons Project
Sale Price: $7.00 Original Price: $9.00
Back 2 School Classroom Bundle of 8 Posters
Sale Price: $8.00 Original Price: $16.00
Mistakes Are... Poster
$3.00

2024 Crush School